Computational Linguistics CSC 2501/485 Fall 2015

11

11. Anaphora; semantic representation; Wrap-up

Frank Rudzicz Toronto Rehabilitation Institute-UHN, and Department of Computer Science, University of Toronto

Reading: Jurafsky & Martin: 17.0–17.4.0, 17.5, 18.0–18.3.1. Bird et al: 10.

> Copyright © 2015, Frank Rudzicz Graeme Hirst and Suzanne Stevenson. All rights reserved.

Anaphora and proforms

• Anaphora: Abbreviated backward reference in text.

Anaphor: A word that makes an anaphoric reference.

• **Pronouns** as canonical anaphors.

Eugene O'Neill was an <u>American playwright</u>. His plays involve characters who inhabit the fringes of <u>society</u>, engaging in depraved behavior, where they struggle to maintain their hopes and aspirations ...

Example based on Wikipedia article on Eugene O'Neill, November 2007.

Reference and antecedence

- Loose usage: "referring back in text".
- Better terminology:

The anaphor and antecedent corefer. Photo from Wikipedia article on Eugene O'Neill, November 2007.

Constraining antecedents 1

- Pronouns must match antecedent in number and gender.
- Antecedent must be "nearby" in text. Hobbs 1978: 90% of antecedents are in same sentence as pronoun, 8% are in previous sentence.
- Antecedent must be "in focus".

?Ross put the wine on the table_i. It_i was brown and round.

Constraining antecedents 2

• Syntactic contraints:

Ross_i rewarded {*him_j* | *himself_i*} for *his_{i,j}*? good work. Nadia_i said that *she_{i,j}*? had done good work. *She_i* said that *she_{i,j}*? was pleased with Nadia_k.

A (non-possessive) pronoun in an NP or PP that refers to the subject NP at the same level must be reflexive. A pronoun subject cannot corefer with a full NP at the same or lower level.

Because $he_{i,j}$? likes chocolate, Ross_j bought a box of truffles.

The antecedent of a forward-referring pronoun must **command** it: *i.e.,* the antecedent's immediately-dominating S node must **non**-immediately dominate the pronoun. *Exercise*: Draw this.

Anaphor resolution

- Anaphor resolution: Determining the antecedent or referent of an anaphor.
 - Antecedent might be another anaphor a chain of coreferring expressions.
- Baseline algorithm: Choose most-recent NP that matches in gender and number.
 - Helpful tool: Gender guesser for names.

Some antecedent problems

• Composite or implicit antecedents:

After Nadia_i met Ross_j, *they*_{{i,j}} went swimming. Ross gave each girl_i a crayon_j. *They*_{{i}} used *them*_{{j}} to draw pictures.

 Antecedents that are events expressed as verbs or whole sentences:

The St. Louis bank Page, Bacon & Co. **suspended operations** in February; **it** caused a panic in San Francisco.

Based on "Banks, businesses cashed in by 'mining the miners.'" by Dale Kasler, 18 Jan 1998. http://www.calgoldrush.com/part4/04business.html

- Traverse parse tree searching for candidate antecedents for pronouns.
- Choose first candidate NP that matches in gender and number (and maybe also in basic selectional preferences).
- Search order:
 - Start at pronoun, work upwards, scanning S and NP nodes left-to-right, breadth-first.
 - If necessary, traverse previous sentences, scanning S and NP nodes left-to-right, breadth-first.

Adapted from: Hobbs 1978, figure 2.

Adapted from: Hobbs 1978, figure 2.

• Evaluation:

- In 300 examples, it found correct antecedent 88% without selectional restrictions, 92% with.
- But 168 had only one plausible antecedent. Performance on this subset was apparently 100%.
- On the other 132, scores were 73%, 82% with and without selectional restrictions, respectively.

Soon, Ng, and Lim 2001 1

- A machine-learning approach.
- Goal: Find chains of coreferences in text (including definite references and anaphors).
- Basic idea:
 - Classify a pair of NPs in text as either coreferring or not.
 - Classifier is *learned* from data: text marked with positive and negative examples of coreference.
 - Features for classification are largely superficial, not syntactic.

Soon, Ng, and Lim 2001 2

Method:

- Find "markables" in text (including nested ones, e.g. both 'CEO of Anaconda' and 'Anaconda').
- For each one, work backwards through preceding markables until a coreferent is found (or give up by running out of candidates).
- Yes/no decision on markable and candidate antecedents are made with decision-tree classifier induced from data by C5 algorithm.

Features for classification

- Distance apart (in sentences).
- Is either a pronoun?
- Is reference definite or demonstrative?
- String match or alias match? Bart Simpson, Mr Simpson; IBM, International Business Machines.
- Number, gender agreement?
- Semantic class agreement (by first sense in WordNet)?
 FEMALE, MALE, PERSON, ORGANIZATION. LOCATION, DATE, TIME, MONEY, PERCENT, OBJECT.
- Are both proper names?
- One is a proper name, and the reference is appositive?

Coreference classifier for MUC-6 data

lssues

- Accuracy depends on accuracy of preprocessing:
 - Finding markables (85%), determining semantic classes (???%).
- Not all features are used.
 - Semantic classes too inaccurate?
- String match and alias are important features, but are sometimes misleading.

- Avoid ML methods that consider all features at once.
 - Low-precision features may overwhelm highprecision features.
- Avoid methods that consider only one candidate at a time.
 - Might make selection too soon.
- Avoid supervised learning-based models.
 - Use knowledge-based heuristics.

17

- "Sieve" is pipeline of rule-based modules.
- Considers all candidates simultaneously.
 - Starts with high-precision features, working through to low-precision.
- Mentions may be clustered (or added to cluster) even if not resolved.
 - Label clusters with gender, number, etc, as it becomes known.

Modules (in order of decreasing precision):

- Exact match
- Appositives and similar, acronyms, demonyms.
- Strict head-matching (no non-matching stop words).
 - Matches the Florida Supreme Court, the Florida court but not Yale University, Harvard University.
- Pronoun matches (lexicon for gender, animacy).

- Results: On MUC data, PRF = (.905, .680, .777).
 - High precision, moderate recall (as expected by design).
- Most noun recall errors are due to lack of semantic knowledge.
 - E.g., recognizing that settlements are agreements, Gitano is the company.

Adding world knowledge

• Some anaphors seem to need complex knowledge and inference to resolve.

The city councillors denied the demonstrators a permit because *they* were communists.

The city councillors denied the demonstrators a permit because *they* feared violence.

Winograd Schema 1

- Resolve anaphors with different antecedents in minimally-different sentence pairs.
- World knowledge and inference are required. The trophy would not fit in the brown suitcase because it was too big | small. What was too big?
- In practice: artificial problem, rarely seen in text; solution requires puzzle-solving as much as language understanding.

Winograd Schema 2

Nonetheless, Rahman and Ng:

- Special resolver for Winograd sentences.
- 73% accuracy on test set of 282 pairs. (Baseline 50%; conventional system ~55%.)
- From FrameNet, Google searches, and corpora: common narrative chains, connective relations, selectional restrictions.
- Cheap tricks or legitimate human-like method?

It's all about meaning

- Semantic interpretation or conceptual analysis:
 - Process of determining the meaning of a sentence or other utterance.
- What is semantic? What is meaning?
 - Many theories and views.
- What is meaning to a computer?

Req. of a semantic theory 1

 A semantic theory should explain what "meanings" are and how they operate.

(An account of meaning that is adequate from one perspective may be quite unsuitable from another)

- A semantic theory should account for ...
 - the meaning of words;
 - the meaning of sentences;
 - the relationship between the meaning of sentences and the meaning of the words in them.

Req. of a semantic theory 2

- A semantic theory should account for properties that "meanings" can have:
 - (non-syntactic) ambiguity
 - synonymy
 - vagueness
 - intensional reference
 - implication

Req. of a semantic theory 3

- A semantic theory should provide a representation for meaning that permits semantic interpretation:
 - Amenable to computations with respect to ambiguity, synonymy, etc.,
 - with the application of world knowledge as necessary.

Meaning as reference

- "The meaning of an utterance is an object or event in the world."
- Problems:
 - Meaning ≠ reference.
 The morning star, the evening star.
 - Non-existent things. The first female president of the U.S., a married bachelor
 - Syncategorematic words. and, if, therefore, ...

Meaning as intent

- "The meaning of an utterance is the intent of the speaker / writer."
- Large developed theory of **speech acts**.

Meaning as behaviour

- "The meaning of an utterance is the listener's or reader's behavioural response to it."
- Procedure executed or action taken as a result of hearing the sentence uttered.
- Problems:
 - Action can be change of mental state; but how do we represent that?
 - Too dependent on individual?

Computational semantics

- What do we want to do with meanings?
 - Knowledge and information extraction from text.
 - Answering questions from text, knowledge base, or database.
 - Translation, interpretation, learning, acquisition of knowledge, ...
 - $NL \rightarrow$ meaning and meaning $\rightarrow NL$.

Semantic representations

- Representation of knowledge (KR) is a central problem of AI.
- Symbolic representations ("vivid"):
 - Logics, semantic nets and frames, executable procedures, ...
- Distributed numeric weights ("opaque"):
 - Neural nets, vector-based methods, ...

KR as semantics 1

- Intuition:
 - For people, meaning is something 'in the world' (as we represent it in our heads).
 - Words and sentences refer to objects, events, actions, ideas, etc, that we can perceive, apprehend, or carry out.
- A computer's 'world' is a database or knowledge base, and the actions that it can execute.

KR as semantics 2

- We can represent utterances in the same formalism as world knowledge.
- Thus, the meaning of a sentence could be:
 - Declarative: A statement in a KR language that is to update or query a knowledge base.
 - Procedural: A segment of code to be executed to cause an effect, to update or query a database or knowledge base, etc.

Knowledge bases 1

- Two-part knowledge base:
 - **TBOX:** Definitions of terminology and necessary facts, including the basic ontology (hierarchy of object types).
 - **ABOX:** Contingent facts (possibly time-stamped as to when true).

Knowledge bases 2

- Three basic operations on KB:
 - tell: Assert a new fact to KB.
 - retract: Take statement out of KB (or mark as no longer true).
 - **ask:** Query whether statement is stored in KB, or for what value of variables the statement is true in KB.
- Argument is assertion in KR formalism.

KR as semantics 3

- Roles of KB:
 - Repository of interpretation: Interpreted input may be added to KB.
 - Underlies representation of discourse structure: Referents of recent mentions.
 - Knowledge for interpretation:
 Can be queried at any point in semantic analysis for facts, plausibility, etc.

Expressive power

- Most (all?) symbolic KR formalisms are first-order or less:
 - Equivalent to first-order predicate calculus (FOPC)*, with quantifiers ∀ and ∃.
 - Much less expressive than natural language.
- Need (at least) higher-order intensional alethic deontic epistemic temporal (modal) logics for full NL expressiveness.
- However, ...

Frames and networks

- A typical approach:
 - Hierarchical classification of events and entities: taxonomy, ontology, is-a hierarchy.
 - Each node describes either:
 - a type of event or entity in effect a potential word sense (≈ TBOX).
 - an *instance* of a type (≈ ABOX).
 - Descriptions in terms of attribute-value pairs.

A node need not have a corresponding word in any language.

Example

 Override more-general information by adding more-specific information.

An instance

Example

```
HUMAN-7:

instance-of: Human

name: "Jill"

legs: 2

mother: HUMAN-23

father: HUMAN-111

job: Student

address: (unknown)
```

OR

- ∃ HUMAN-7 (Human(HUMAN-7) ∧ name(HUMAN-7, "Jill")
 - Λ legs (HUMAN-7, 2) Λ mother (HUMAN-7, HUMAN-23)
 - \wedge father (HUMAN-7, HUMAN-111)
 - $\Lambda job(HUMAN-7, Student)$
 - Λ address(HUMAN-7, (unknown)))

 Constants represent instances denoted by names or definite references:

nadia, human-7, dog-16, wsptwe

 One-place predicates represent properties denoted by nouns and adjectives.

dog(dog-16), happy(dog-16)

 Two-place predicates represent relational attributes:

owner(dog-16, human-7)

The structure of events

- As important as the structure of physical objects.
- Attributes are **thematic roles**:
 - Agent: doer of the action.
 - **Patient/Theme:** entity affected by the action.
 - **Instrument:** entity used to do the action.
 - **Result:** entity created.
- Adjunct or modifier attributes include:
 - Time, Location, Manner.

Example

An instance of an event with an agent, theme, and instrument

Example

```
BREAK-22:
   instance-of: Breaking
   agent: HUMAN-7
   theme: VASE-32
   instrument: HAMMER-24
OR
```

"Jill broke the vase" with the hammer."

- **BREAK-22** (Breaking (BREAK-22)
 - Λ agent (BREAK-22, HUMAN-7)
 - \wedge theme (BREAK-22, VASE-32)
 - Λ instrument (BREAK-22, HAMMER-24))

OR

Breaking (BREAK-22, HUMAN-7, VASE-32, HAMMER-24)

Positional specification of arguments

- n-place or (n+1)-place predicates to represent relationships denoted by verbs.
 - sleep(nadia)
 cuddle(nadia, dog-16)
 give(nadia, dog-16, ross)
 - sleep(sleep-23, nadia)
 cuddle(cuddle-12, nadia, dog-16)
 give(give-333, nadia, dog-16, ross)
- We can decompose things into conjunctions of one- or two-place predicates.

Interpreting NL sentences in first-order representations.

Nadia feeds Ross → feed (nadia, ross)

OR

Sentences with quantifiers:

 $\{All cows \mid Cows \} eat ice-cream \rightarrow \\ \forall x (cow (x) \Rightarrow eats (x, ice-cream)) \\ Every student feeds a weasel \rightarrow \\ \forall x (student (x) \Rightarrow \\ \exists y (weasel (y) \land (feeds (x, y)) \\ \exists y (weasel (y) \land \\ \forall x (student (x) \Rightarrow feeds (x, y)) \\ \end{cases}$

Procedural semantics

- Input: Parse tree.
- **Output:** Executable code to query database.
 - If process fails, try a different parse.
- Basic method: Pattern-matching rules:
 - If $P \subset tree$, insert f(P) in output.

Example

connect(aa-57, chicago, boston)

Quantification

- System has four levels of rules: determiners, NPs, PPs on NPs, clauses.
- Rules for order of interpretation and for where result is placed cause NP quantifiers to apply to whole sentence.

Every \rightarrow (\forall x: R; P)

Every flight from Boston to NY leaves Boston at 8:00.
 (∀x1 / flight: connect(x1, Boston, NY); equal (dtime (x1, Boston), 800))

Pros and cons

- Simple method.
 - Fast, but very superficial.
- May be good in very limited domains.
- Need to characterize anticipated input fairly specifically; not portable.
- Rules may interact in complex ways.
- Can't detect ambiguity.

Methods of interpretation 2

• Semantic grammars:

- Tailor grammar to specific domain.
- Integrate parsing and semantic analysis: parser builds semantic structure directly.
- Grammar rules take semantic class into account.
 NP → City | Flight | Airline | ...
 Flight → Flight-code | Time flight to City | ...
 Time → morning | ... | Number {a.m. | p.m.} | ...
- More-specific rules (less portable).

Methods of interpretation 3

- Compositional semantics
- **Principle of compositionality:**
 - The meaning of a syntactic constituent is a *systematic function* of the meaning of its parts.
- Philosophical and technical problems with compositionality:
 - What counts as "systematic"?
 - What about sense modulation (fast typist, fast road)?
 - What about the role of the context of a utterance?

Compositionality 1

• Rule-to-rule principle:

- Each syntactic rule has corresponding semantic rule.
- Work in parallel or lockstep to build parse tree and logical form simultaneously.
- Implication for semantic representation:
 Representations must be combinable in various ways.
 - Representations of Nadia and see must be combinable (in different ways) to give representations of both see Nadia and Nadia sees.

Compositionality 2

• Implication for grammar:

- Whenever there is a syntactic rule that combines two or more constituents to create a new one, ...
- ... there is a corresponding semantic rule that creates the semantic interpretation for the new constituent from the interpretations of its components ...
- ... by combination of one with the other.
- E.g., rule VP \rightarrow V NP must specify how the semantics of the V and NP combine to give semantics of the VP.

Semantic objects

- Words: Each word's entry in the lexicon has an associated semantic object from the KB or semantic representation.
- Notation: Use 'prime' on word or constituent to denote its associated semantic object: VP', Nadia', [Nadia sleeps]'.

Combining semantic objects

- Regard one semantic object as a predicate, the other as its argument.
- Example: $S \rightarrow NP VP \{ Sem: S' = VP'(NP') \}$
 - VP"s must be functions of one argument.
 - [Nadia sleeps]' = sleeps'(Nadia') = sleeps'(nadia)

 - Hence sleeps' is a function of one argument, a lambda abstraction:

 $\lambda y (\exists x (sleeping(x) \land sleeper(x, y)))$

Determiners & quantifiers 1

- [Nadia feeds a fish]'

a fish behaves quite differently than Ross

NP → Det N {Sem: NP' = Det'(N')}

 a' = λPλQ (∃f (P(f) ∧ Q(f)))
 fish' = λa (fish (a))
 [a fish]' = λQ (∃f (fish (f) ∧ Q(f)))

Determiners & quantifiers 2

[feeds a fish]' = feeds'([a fish]')

= $\lambda z(\exists f(fish(f) \land \exists x(feeding(x) \land feeder(x,z) \land feedee(x,f)))$

Determiners & quantifiers 3

• [A fish feeds Ross]'

a fish behaves same as when object of sentence

Quantifier scope ambiguity 1

No man is an island, entire of itself; every man is a piece of the continent, a part of the main.

–John Donne, Meditation XVII, 1623

Every man is a piece of the continent \rightarrow

 $\forall x (man(x) \Rightarrow \exists y (piece-of-continent(y)) \land be(x, y))$

 $\begin{cases} \exists y (piece-of-continent(y) \land \\ \forall x (man(x) \Rightarrow be(x, y))) \end{cases}$

Quantifier scope ambiguity 2

He was inside the building when the rear of the plant exploded. "Everybody saw a huge fireball, and everybody started running out," Bales said.

-Associated Press, 21 Feb 2003

Every person saw a fireball \rightarrow

Quantifier scope ambiguity 3

- Syntax doesn't help choose: parse tree has the same structure in each case.
- Present rules will give wide-scope reading. $\forall x (\ldots (x) \Rightarrow \exists y (\ldots (y) \land \ldots (x, y)))$
- Need to make both choices available for separate disambiguation process.

Evaluating interpretations

- Do the semantic representations allow other processes to "do the right thing"?
 - Inference, retrieval, question-answering, ...
- "Learning by reading"
 - Read 133 sentences from a high-school chemistry text and answer the exercises.

Rutu Mulkar, Jerry R. Hobbs, Eduard Hovy, Hans Chalupsky, and Chin-Yew Lin. Learning by reading: Two experiments. Proceedings of the 3rd International Workshop on Knowledge and Reasoning for Question Answering, Hyderabad, India, January 2007. Some knowledge from book:

H3O+ is the conjugate acid of H2O.Acids cause certain dyes to change color.Bases have a bitter taste and feel slippery.

Soap is a base.

Exercises:

Does H3O+ cause certain dyes to change color? Answer: yes What taste does soap have?

Answer: bitter

Soap feels how?

Answer: slippery

What was in this course

- Intro to computational linguistics.
- Grammars and parsing; features.
- Chart parsing.
- Statistical PP attachment.
- Part-of-speech tagging; statistical parsing.
- Semantics and semantic interpretation.
- Lexical semantics.
- Word sense disambiguation.
- Neural word representations.
- Anaphora and coreference.

Syntax

Semantics

Underlying themes

- Ambiguity is a pervasive problem.
- Algorithms for parsing, interpretation, ambiguity resolution.
- Supplementing linguistic knowledge with statistical knowledge from corpora.
- Importance of lexical information.
- Reliance on semantic representations.

What's in CSC 401 / 2511

- Introduction to corpus-based linguistics.
- Text categorization, classification methods.
- N-gram models and smoothing.
- Entropy and information theory.
- (Hidden) Markov models.
- Statistical machine translation.
- Automatic speech recognition and synthesis.
- Information retrieval.
- Text summarization.

Thanks